在机械加工过程中,自激振动是由振动过程本身引起某种切削力的周期性变化,又由这个周期性变化的切削力,反过来加强和维持振动,是振动系统补充了由阻尼作用消耗的能量。当振动运动停止时,该交变力也就消失了。这种在金属切削过程中的自激振动,一般称为切削颤振。
特别指出,自激振动发生的几率远远高于强迫振动。切削相对振动会降低工件已加工的表面品质,并影响刀具乃至机床的使用寿命。尤其现在高精度的数控车床的大量使用,由数控车床所保证的工件的高精度等指标,将会在颤振发生时变得毫无意义。
(1)安装刀具时选取合适的中心高。车削内孔槽时,刀尖点理论上要求与孔的中心线一致,但实际上在安装刀具时刀尖点往往在中心线偏上0.1 mm左右,这主要是刀具在切削时,刀尖点由于受到反作用往往下偏移,因此要给其一个补偿量。
(2)尽可能缩短刀杆的悬伸量以提高刀具的刚性。当刀杆受力时,会产生弯曲,会引发振动,且悬长越长,振动加剧。一般情况下,刀具伸出的长度不宜超过刀杆长度的2-3倍,这样可以大大提高细长刀杆的抗弯强度。
(3)合理选择刀具的几何参数。刀具的几何参数主要有:刀具的前角、主偏角、后角等。前角对振动的影响较大,随着前角的增大,振动幅度也会随之下降。但在切削速度较高时,前角对振动的影响将减弱。所以,高速切削时,即使用负前角的刀具,也不致产生强烈的振动。如果是主偏角增大,切削力将会减少,同时切削宽度也减小。随着主偏角的增大,振动幅度逐渐减小,但当角度大于90°后,振动的幅度又会有所增大。对于后角的选择,可减小到2°~3°,此时振动有明显的减弱。也可以在刀具主后角上,磨出一段负倒棱角,能起到很好的消振作用。
(4)提高工件系统的抗振性。提高工艺系统的抗振性,是控制和预防自激振动的重要措施之一。在工艺系统中,工件系统往往是易于发生振动的薄弱环节,因此提高工件系统的抗振性,是非常必要的。
以上就是精密数控车床产生振动的原因和解决方法,希望对大家有帮助。